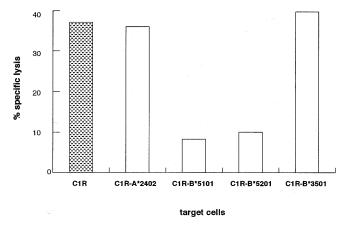
## **BRIEF COMMUNICATION**


Hideo Nakajima · Yuki Ikeda Moore Masafumi Takiguchi

## Functional expression of the NKB1 killer cell inhibitory receptors on a $\gamma\delta$ CTL clone

Received: 14 August 1996 / Revised: 10 September 1996

The receptors for major histocompatibility complex (MHC) class I molecules on NK cells prevent NK cell-mediated cytolysis (Moretta et al. 1992; Gumperz and Parham 1995; Colonna 1996; Lanier and Phillips 1996). The known receptors for HLA-Bw4 and HLA-C molecules recognize polymorphic residues on residues 77-80 of MHC class I molecules (Colonna et al. 1993; Cella et al. 1994). Recent studies using monoclonal antibodies (mAb) specific for these receptors demonstrated that in addition to NK cells, a small percentage of peripheral T cells express these receptors (Aramburu et al. 1990; Ferrini 1994; Phillips et al. 1995). Moreover, it has been shown that superantigendependent cytotoxicity by  $\alpha\beta$  T cells is inhibited via the binding of the NKB1 receptor to HLA-Bw4 molecules (Phillips et al. 1995) and that NK-like activity of CTL is inhibited via the binding of p58 and CD94 molecules to HLA-Cw molecules (Mingari et al. 1995). Thus, since these receptors are expressed on both NK cells and CTL, it was recently proposed to call them killer-cell inhibitory receptor (KIR; Long et al. 1996). We recently showed that the recognition of some  $\gamma\delta$  T-cell clones is inhibited by the surface expression of HLA class I molecules on target cells (Nakajima et al. 1995). However, it still remains unknown whether these  $\gamma\delta$  CTL clones express known KIR for HLA class I molecules. In the present study, we attempted to demonstrate directly the surface expression and functions of these receptors on  $\gamma\delta$  CTL clones.

Our previous study suggested that six  $\gamma\delta$  CTL clones may carry heterogeneous KIR (Nakajima et al. 1995). To directly demonstrate KIR on  $\gamma\delta$  CTL, we examined the surface expression of known KIR on these  $\gamma\delta$  CTL clones using HP3E4 anti-p58, DX9 anti-NKB1, and HP3B1 anti-CD94 mAb. The results showed that these  $\gamma\delta$  CTL clones did not express these receptors (data not shown), suggesting that these  $\gamma\delta$  CTL clones may express KIRs for HLA-A or



**Fig. 1** The cytolysis of C1R cells expressing various HLA class I molecules by YY-D3-1 clone. Cytolysis of the YY-D3-1 clone for C1R and C1R transfectants was tested at an effector: target (E:T) ratio of 6:1. <sup>51</sup>Cr release in the supernatants of the mixture of <sup>51</sup>Cr-labeled target cells and the CTL clone was measured at 6 h after both cells were mixed. Percent-specific lysis was calculated as previously described (Nakajima et al. 1995). The surface expression of each HLA class I molecules on the transfectants was measured using flow cytometry with W6/32 mAb. The mean fluorescence intensity of the C1R transfectants was as follows: C1R;30.4, C1R-A\*2402;389.5, C1R-B\*3501;1437.2, C1R-B\*5101;614.9, C1R-B\*5201;1094.3

new KIRs that are not recognized by the available mAb. Therefore, in order to obtain  $\gamma\delta$  CTL clones expressing the KIRs that can be detected by these mAbs, we attempted to further establish  $\gamma\delta$  CTL clones from peripheral blood lymphocytes (PBL) of an HIV-1-infected individual as described previously (Nakajima et al. 1995). We selected killer cell clones which killed the NK-sensitive cell line C1R but did not kill the C1R transfectants expressing each HLA class I molecule. Of these killer cell clones, one clone (YY-D3-1) failed to effectively kill the C1R transfectants expressing HLA-B\*5101(C1R-B\*5101) and HLA-B\*5201(C1R-B\*5201) expressing the Bw4, while it effectively killed C1R transfectants expressing HLA-B\*3501 (C1R-B\*3501) expressing the Bw6 (Fig. 1). These results imply that this clone carries the NKB1 receptor. In fact, the flow cytometric analysis of this

H. Nakajima  $\cdot$  Y. Ikeda Moore  $\cdot$  M. Takiguchi ( $\boxtimes$ )

Department of Tumor Biology, Institute of Medical Science,

University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan

Table 1 Flow cytometric analysis of surface molecules on the YY-D3-1 clone

| CTL clone | Monoclonal antibodies* |        |       |      |      |      |      |      |       |      |      |
|-----------|------------------------|--------|-------|------|------|------|------|------|-------|------|------|
|           | TCR-αβ                 | TCR-γδ | CD3   | CD4  | CD8  | CD16 | CD56 | p58  | NKB1  | CD94 | _+   |
| YY-D3-1   | 9.63‡                  | 32.33  | 83.87 | 2.95 | 9.60 | 3.63 | 3.71 | 5.18 | 67.83 | 4.09 | 3.25 |
|           |                        |        |       |      |      |      |      |      |       |      |      |

\* mAb used for staining the CTL clone are as follows: WT31, 11F2, anti-Leu4, OKT4, anti-Leu2b, 3G8, B159, HP3E4, DX9, and HP3B1mAb for TCR- $\alpha\beta$ , TCR- $\gamma\delta$ , CD3, CD4, CD8, CD16, CD56, p58, NKB1, and CD94, respectively.

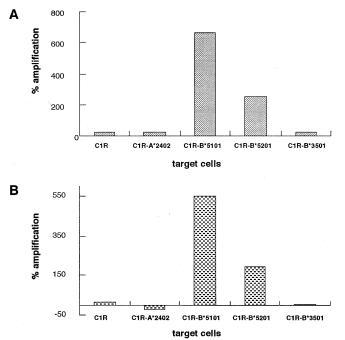



Fig. 2A, B Restoration of cytotoxic activity of the YY-D3-1 clone for the C1R transfectants by blocking W6/32 anti-HLA class I mAb and DX9 anti-NKB1 mAb. A Cytotoxicity of the YY-D3-1 clone for C1R and the transfectants was examined at an E:T ratio of 4:1 after blocking of target cells with W6/32 mAb at a concentration of 10  $\mu$ g/ ml. Percent amplification of specific lysis was calculated as follows: % amplication = {(% specific lysis of target cells blocked with the mAb - % specific lysis of target cells without blocking of mAb)/% specific lysis of target cells without blocking of mAb} > 100 B Cytotoxicity of the YY-D3-1 clone for C1R and the transfectants was examined at an E:T ratio of 4:1 after blocking of the CTL clone with DX9 mAb at a concentration of 10  $\mu$ g/ml

clone revealed the surface expression of the NKB1 receptor (Table 1). This clone expressed CD3 and  $\gamma\delta$  TCR but neither CD4, CD8, CD16, nor CD56 (Table 1). Taken together, the results suggested that the  $\gamma\delta$  CTL clone carries functional NKB1 receptors.

In order to clarify the function of the NKB1 receptor on the YY-D3-1 CTL clone, we investigated the effect of W6/32 anti-HLA class I mAb and DX9 anti-NKB1 mAb on the cytolysis of C1R-transfectants. The cytolysis of C1R-B\*5101 and C1R-B\*5201 was effectively restored in the presence of W6/32 mAb, while this W6/32 mAb effect was not found in the cytolysis of C1R-B\*3501 cells (Fig. 2). Moreover, the cytolysis of C1R-B\*5101 and C1R-B\*5201 cells by this clone was restored by the blocking of DX9 mAb (Fig. 2). These results indicate that the NKB1 recep-

F2, <sup>‡</sup> Mean fluorescence intensities

+ The cells were stained with only FITC-labeled mouse-specific Ig antibodies

tors on YY-D3-1 CTL clone negatively regulate antigen recognition.

It is well known that NKB1 receptors contain three immunoglobulin superfamily domains in the extracellular domain (D'Andrea et al. 1995; Colonna et al. 1995) and recognize HLA-B molecules carrying the Bw4 epitope (Litwin et al. 1994). Residues 77-83 forming serological Bw4 epitope provide the binding site for these receptors (Gumperz et al. 1995). HLA-A\*2402 also carries the Bw4 epitope that is detected by anti-Bw4 mAb (Müller et al. 1989), but a recent study showed that NKB1 receptors on NK cells do not negatively regulate the recognition of target cells expressing HLA-A\*2402 by NK cells (Gumperz et al. 1995), suggesting that NKB1 receptors fail to recognize the Bw4 epitope on HLA-A\*2402 molecules. In order to confirm the inability of NKB1 receptors to reorganize HLA-A\*2402, we investigated recognition of the YY-D3-1 CTL clone for C1R-A\*2402 cells. The cytolysis of C1R-A\*2402 cells is almost identical to that of C1R cells (Fig. 1). Moreover, the blocking of W6/32 mAb and DX9 mAb failed to amplify cytolysis of the C1R-A\*2402 cells (Fig. 2). These results indicate that NKB1 receptors on the  $\gamma\delta$  CTL clone do not recognize the Bw4 epitope on HLA-A\*2402 molecules. HLA-A\*2402 molecules carry the same sequences in the residues 77-82 with HLA-B\*5101 and B\*5201 (Sekimata et al. 1989). Our recent study showed that position 8 of nonamer peptides critically influence the binding of TÜ109 anti-Bw4 mAb to HLA-B\*5101 molecules (Takamiya et al. 1996). Since this mAb can bind to HLA-B molecules carrying the Bw4 epitope but not to HLA-A molecules carrying the Bw4 epitope, it is speculated that NKB1 receptors also recognize the sequence of peptides bound to HLA class I molecules carrying the Bw4 epitope, and position 8 of peptides bound to HLA-A molecules carrying the Bw4 epitopes may affect the binding of NKB1 receptors.

NKB1 is preferentially expressed on T cells with a memory phenotype (Lanier and Phillips 1996). This molecule may control an immune reaction via T cells. Functional characterization of NKB1 molecules on T cells has been carried out only in the inhibition of superantigen-mediated cytolysis by CD4+ and CD8+  $\alpha\beta$  T cells (Phillips et al. 1995). Here we directly demonstrated the functional expression of NKB1 receptors on the  $\gamma\delta$  T-cell clone. Thus, the present study provided additional evidence that NKB1 receptors negatively regulate recognition of T cells. Human  $\gamma\delta$  T cells have a crucial role in the elimination of tumor cells as well as virus- and bacteria-infected cells lacking MHC class I molecules. Further studies concerning the role of KIR on  $\gamma\delta$  T cells are expected to clarify the molecular recognition via TCR and the inhibitory receptors.

Acknowledgments We thank Dr. Lewis L. Lanier and Dr. Migeal Lopez-Botet for providing DX9, HP3E4, and HP3B1 mAbs. This work was supported by a grant for a Comprehensive New Ten-Year Strategy of Cancer Control from the Ministry of Health and Welfare, the Government of Japan.

## References

- Aramburu, J., Balboa, M. A., Ramírez, A., Silva, A., Acevedo, A., Sánchez-Madrid, F., De Landázuri, M. O., and López-Botet, M. A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-γ/δ+T lymphocytes. I. Inhibition of the IL-2 dependent proliferation by anti-Kp43 monoclonal antibody. *J Immunol 144*: 3238–3247, 1990
- Cella, M., Longo, A., Ferrara, G. B., Strominger, J. L., and Colonna, M. NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J Exp Med 180: 1235–1242, 1994
- Colonna, M., Borsellino, G., Falco, M., Ferrara, G. B., and Strominger, J. L. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. *Proc Natl Acad Sci USA 90*: 12000–12004, 1993
- Colonna, M. and Samaridis, J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. *Science* 268: 405–408, 1995
- Colonna, M. Natural killer cell receptors specific for MHC class I molecules. Curr Opin Immunol 8: 101–107, 1996
- D'Andrea, A., Chang, C., Franz-Bacon, K., McClanahan, T., Phillips, J. H., and Lanier, L. L. Molecular cloning of NKB1: a natural killer cell receptor for HLA-B allotypes. *J Immunol 155:* 2306–2310, 1995
- Ferrini, S., Cambiaggi, A., Meazza, R., Sforzini, S., Marciano, S., Mingari, M. C., and Maretta, L. T cell clones expressing the natural killer cell-related p58 receptor molecule display heterogeneity in phenotypic properties and p58 function. *Eur J Immunol 24:* 2294–2298, 1994

- Gumperz, J. E., Litwin, V., Phillips, J. H., Lanier, L. L., and Parham, P. The Bw4 public epitope of HLA-B molecule confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med 181: 1133–1144, 1995
- Gumperz, J. E. and Parham, P. The enigma of the natural killer cell. *Nature 178:* 245–248, 1995
- Lanier, L. L. and Phillips, J. H. Inhibitory MHC class I receptors on NK cells and T cells. *Immunol Today* 17: 86–91, 1996
- Litwin, V., Gumperz, J., Parham, P., Phillips, J. H., and Lanier, L. L. NKB1: a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J Exp Med 180: 537–543, 1994
- Long, E. O., Colonna, M., and Lanier, L. L. Inhibitory MHC class I receptors on NK and T cells: a standard nomenclature. *Immunol Today* 17: 100, 1996
- Mingari, M. C., Vitale, C., Cambiaggi, A., Schiavetti, F., Meliolli, G., Ferrini, S., and Poggi, A. Cytolytic T lymphocytes displaying natural killer (NK)-like activity: expression of NK-related functional receptors for HLA class I molecules (p58 and C94) and inhibitory effect on the TCR-mediated target cell lysis or lymphokine production. *Int Immunol 7:* 697–703, 1995
- Moretta, L., Ciccone, E., Moretta, A., Höglund, P., Öhlén, C., and Kärre, K. Allorecognition by NK cells: nonself or no self? *Immunol Today* 13: 300–306, 1992
- Müller, C. A., Enger-Blum, G., Gekeler, B., Steier, I., Weiss, E., and Schmidt, H. Genetic and serological heterogeneity of the supertypic HLA-B locus specificities Bw4 and Bw6. *Immunogenetics* 30: 200–207, 1989
- Nakajima, H., Tomiyama, H., and Takiguchi, M. Inhibition of  $\gamma\delta$  T cell recognition by receptors for MHC class I molecules. *J Immunol* 155: 4139–4142, 1995
- Phillips, J. H., Gumperz, J. E., Parham, P., and Lanier, L. L. Superantigen-dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. *Science* 268: 403–408, 1995
- Sekimata, M., Hayashi, H., Nakayama, S., Kano, K., and Takiguchi, M. Serological demonstration of HLA-Bw4/Bw6 epitopes on hybrid molecules between HLA-B35 and HLA-B51. *Immunogenetics 30*: 229–231, 1989
- Takamiya, Y., Sakaguchi, T., Miwa, K., and Takiguchi, M. Role of HLA-B\*5101 binding nonamer peptides in formation of the HLA-Bw4 public epitope. *Int Immunol 8:* 101–108, 1996